

#1 [4 pts] Evaluate

$$\int \cos \theta (\sin \theta)^{4/3} d\theta.$$

(Hint: Use substitution.)

Substitute $u = \sin \theta$, $du = \cos \theta d\theta$ to obtain

$$\int u^{4/3} du = \frac{3}{7}u^{7/3} + C = \boxed{\frac{3}{7}(\sin \theta)^{7/3} + C.}$$

#2a [3 pts] Find the partial fraction decomposition of $\frac{2x-2}{x^2+2x}$.

The denominator $x^2 + 2x$ factors as $x(x+2)$, so the partial fraction decomposition has the form

$$\frac{2x-2}{x^2+2x} = \frac{A}{x} + \frac{B}{x+2},$$

where A and B are constants. Cross-multiplying gives

$$\frac{2x-2}{x^2+2x} = \frac{A(x+2) + Bx}{x(x+2)} = \frac{Ax + 2A + Bx}{x^2 + x} = \frac{(A+B)x + 2A}{x^2 + x}.$$

Equating coefficients, we see that $2x-2 = (A+B)x + 2A$, so

$$\begin{aligned} A+B &= 2, \\ 2A &= -2, \end{aligned}$$

and this system of equations has the unique solution $A = -1$, $B = 3$. So the desired partial fraction decomposition is

$$\frac{2x-2}{x^2+2x} = \boxed{\frac{-1}{x} + \frac{3}{x+2}}.$$

#2b [3 pts] Use your answer to #2a to evaluate $\int_2^4 \frac{2x-2}{x^2+2x} dx$.

We have by the previous problem

$$\begin{aligned} \int_2^4 \frac{2x-2}{x^2+2x} dx &= \int_2^4 \left(\frac{-1}{x} + \frac{3}{x+2} \right) dx \\ &= \int_2^4 \frac{-dx}{x} + \int_2^4 \frac{3 dx}{x+2}. \end{aligned}$$

The first integral is $-\ln x]_2^4 = -\ln(4) + \ln(2) = \ln 2$. For the second integral, substitute $u = x+2$, $du = dx$ to obtain

$$\int_2^4 \frac{3 dx}{x+2} = \int_4^6 \frac{3 du}{u} = 3 \ln u]_4^6 = 3 \ln 6 - 3 \ln 4.$$

Putting the two pieces together, we obtain the answer

$$3 \ln 6 - 3 \ln 4 + \ln 2$$

which can be simplified to $\ln(27/16)$.

#3 [5 pts] Evaluate

$$\int_1^\infty e^{-4x} dx,$$

or explain why it does not exist.

In fact, the improper integral converges:

$$\begin{aligned} \int_1^\infty e^{-4x} dx &= \lim_{n \rightarrow \infty} \left[\int_1^n e^{-4x} dx \right] \\ &= \lim_{n \rightarrow \infty} \left[-\frac{e^{-4x}}{4} \right]_1^n \\ &= \lim_{n \rightarrow \infty} \left[-\frac{e^{-4n}}{4} + \frac{e^{-4}}{4} \right] = \boxed{\frac{e^{-4}}{4}}. \end{aligned}$$

#4 [5 pts] Use the trigonometric substitution $x = \sec \theta$ to evaluate

$$\int \frac{dx}{x^2 \sqrt{x^2 - 1}}.$$

Substitute $x = \sec \theta$, $dx = \sec \theta \tan \theta d\theta$ to obtain

$$\begin{aligned} \int \frac{dx}{x^2 \sqrt{x^2 - 1}} &= \int \frac{\sec \theta \tan \theta d\theta}{\sec^2 \theta \sqrt{\sec^2 \theta - 1}} \\ &= \int \frac{\tan \theta d\theta}{\sec \theta \sqrt{\tan^2 \theta}} \\ &= \int \frac{d\theta}{\sec \theta} \\ &= \int \cos \theta d\theta = \sin \theta + C. \end{aligned}$$

Now replacing θ with $\text{arcsec } x$ yields the answer $\boxed{\sin \text{arcsec } x + C}$, or equivalently $\boxed{\sin \arccos(1/x) + C}$. This in turn can be expressed as an algebraic function:

$$\begin{aligned} \sin \arccos(1/x) + C &= \sqrt{1 - \cos^2(\arccos(1/x))} + C \\ &= \sqrt{1 - 1/x^2} + C \\ &= \frac{\sqrt{x^2 - 1}}{x} + C. \end{aligned}$$

Bonus (a) Use integration by parts twice to evaluate the *indefinite* integral

$$\int e^{-x} \sin x \, dx.$$

Integrate by parts with $u = e^{-x}$, $du = -e^{-x} \, dx$, $dv = \sin x \, dx$, $v = -\cos x$ to get

$$\int e^{-x} \sin x \, dx = -e^{-x} \cos x - \int e^{-x} \cos x \, dx.$$

To evaluate the resulting integral, use integration by parts again, this time setting $u = e^{-x}$, $du = -e^{-x} \, dx$, $dv = \cos x \, dx$, $v = \sin x$, to obtain

$$\int e^{-x} \cos x \, dx = e^{-x} \sin x + \int e^{-x} \sin x \, dx.$$

Combining these calculations, and letting I denote the original integral, we obtain

$$\begin{aligned} I &= \int e^{-x} \sin x \, dx \\ &= -e^{-x} \cos x - \int e^{-x} \cos x \, dx \\ &= -e^{-x} \cos x - \left(e^{-x} \sin x + \int e^{-x} \sin x \, dx \right) \\ &= -e^{-x} \cos x - e^{-x} \sin x - I. \end{aligned}$$

Therefore $2I = -e^{-x} \cos x - e^{-x} \sin x$ (plus a constant), that is,

$$I = \frac{-e^{-x} \cos x - e^{-x} \sin x}{2} + C.$$

Bonus (b) Use your answer to (a) to evaluate the *improper* integral

$$\int_0^\infty e^{-x} \sin x \, dx.$$

$$\begin{aligned} \int_0^\infty e^{-x} \sin x \, dx &= \lim_{n \rightarrow \infty} \left[\int_0^n e^{-x} \sin x \, dx \right] \\ &= \lim_{n \rightarrow \infty} \left[\frac{-e^{-x} \cos x - e^{-x} \sin x}{2} \Big|_0^n \right] \\ &= \lim_{n \rightarrow \infty} \left[\frac{-e^{-n} \cos n - e^{-n} \sin n}{2} - \frac{-1 - 0}{2} \right] \\ &= \boxed{\frac{1}{2}}. \end{aligned}$$