

#1 [4 pts] Evaluate

$$\frac{d}{dx} \left[ \int_x^0 r^r dr \right].$$

By Part I of the Fundamental Theorem of Calculus,

$$\frac{d}{dx} \left[ \int_x^0 r^r dr \right] = \frac{d}{dx} \left[ - \int_0^x r^r dr \right] = \boxed{-x^x}.$$


---

#2 [5 pts] Find all values of  $a$  such that

$$\int_a^{2a} (6s^2 - 7) ds = 0.$$

First, evaluate the integral in terms of  $a$ , using Part II of the Fundamental Theorem of Calculus,

$$\begin{aligned} \int_a^{2a} (6s^2 - 7) ds &= 2s^3 - 7s \Big|_a^{2a} \\ &= (2(2a)^3 - 7(2a)) - (2a^3 - 7a) \\ &= 16a^3 - 14a - 2a^3 + 7a \\ &= 14a^3 - 7a = 7a(2a^2 - 1). \end{aligned}$$

Setting this to zero yields the answers  $\boxed{a = 0, a = \pm 1/\sqrt{2}}$ .

---

#3 [5 pts] Evaluate  $\int_0^{\pi/2} (\cos x) 2^{\sin x} dx$ .

Use substitution with  $u = \sin x$ ,  $du = \cos x dx$  to get

$$\begin{aligned} \int_0^{\pi/2} (\cos x) 2^{\sin x} dx &= \int_{\sin(0)}^{\sin(\pi/2)} 2^u du \\ &= \int_0^1 2^u du \\ &= \left. \frac{2^u}{\ln 2} \right|_0^1 = \frac{2}{\ln 2} - \frac{1}{\ln 2} = \boxed{\frac{1}{\ln 2}}. \end{aligned}$$

#4 [6 pts] Evaluate  $\int (\ln x)^2 dx$ .

Use integration by parts. This integral is  $\int u dv$ , where  $u = (\ln x)^2$  and  $dv = dx$ . Therefore  $du = \frac{2 \ln x}{x} dx$  and  $v = x$ , yielding

$$(1) \quad \int (\ln x)^2 dx = x(\ln x)^2 - \int 2 \ln x dx.$$

We now need to find  $\int \ln x dx$ . Again, we can use integration by parts with  $u = \ln x$  and  $dv = dx$ , so  $du = dx/x$  and  $v = x$ . This gives

$$(2) \quad \int \ln x dx = x \ln x - \int dx = x \ln x - x + C,$$

and substituting (2) into (1) yields

$$\int (\ln x)^2 dx = x(\ln x)^2 - 2(x \ln x - x + C)$$

or more simply

$$\int (\ln x)^2 dx = x(\ln x)^2 - 2x \ln x + 2x + C.$$

**Bonus Problem [5 honors points]** Evaluate  $\int \frac{e^{3x} + e^x}{e^{2x} - 1} dx$ .

Write the integral as

$$\int \frac{(e^{2x} + 1)e^x}{e^{2x} - 1} dx$$

and make the substitution  $u = e^x$ ,  $du = e^x dx$  to obtain

$$\int \frac{u^2 + 1}{u^2 - 1} du.$$

By polynomial long division, this becomes

$$\begin{aligned} \int \left(1 + \frac{2}{u^2 - 1}\right) du &= \int du + \int \frac{2}{u^2 - 1} du \\ &= u + \int \frac{2}{u^2 - 1} du. \end{aligned}$$

Note that  $u^2 - 1 = (u - 1)(u + 1)$ ; we therefore need to find the partial fraction decomposition

$$\frac{2}{u^2 - 1} = \frac{A}{u - 1} + \frac{B}{u + 1} = \frac{A(u + 1) + B(u - 1)}{u^2 - 1} = \frac{Au + A + Bu - B}{u^2 - 1} = \frac{(A + B)u + (A - B)}{u^2 - 1}.$$

So  $A + B = 0$  and  $A - B = 2$ ; this system has the solution  $A = 1$ ,  $B = -1$ . Therefore

$$\begin{aligned}\int \frac{2}{u^2 - 1} du &= \int \frac{du}{u-1} - \int \frac{du}{u+1} \\ &= \ln|u-1| + \ln|u+1| + C\end{aligned}$$

(by substituting  $v = u - 1$ ,  $dv = du$  in the first integral and substituting  $w = u + 1$ ,  $dw = du$  in the second one). Therefore

$$\int \frac{u^2 + 1}{u^2 - 1} du = u + \ln|u-1| + \ln|u+1| + C$$

and

$$\int \frac{(e^{2x} + 1)e^x}{e^{2x} - 1} dx = e^x + \ln|e^x - 1| + \ln|e^x + 1| + C.$$