

Note: In solving Problem #1 (and possibly other problems), you may use the formulas

$$\boxed{\sum_{i=1}^n i = \frac{n(n+1)}{2}} \quad \text{and} \quad \boxed{\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}}$$

Problem #1 [4 pts] Find the exact value of

$$\lim_{n \rightarrow \infty} \sum_{i=1}^n \left[\left(-2 + \frac{6i}{n} \right)^2 - 3 \left(-2 + \frac{6i}{n} \right) + 2 \right] \left(\frac{6}{n} \right). \quad (\star)$$

First, expand the summand to get

$$\begin{aligned} & \lim_{n \rightarrow \infty} \sum_{i=1}^n \left[4 - \frac{24i}{n} + \frac{36i^2}{n^2} + 6 - \frac{18i}{n} + 2 \right] \left(\frac{6}{n} \right) \\ &= \lim_{n \rightarrow \infty} \sum_{i=1}^n \left[\frac{72}{n} - \frac{252i}{n^2} + \frac{216i^2}{n^3} \right]. \end{aligned}$$

Now break up the sum into pieces as

$$\begin{aligned} & \lim_{n \rightarrow \infty} \left[\left(\sum_{i=1}^n \frac{72}{n} \right) - \left(\sum_{i=1}^n \frac{252i}{n^2} \right) + \left(\sum_{i=1}^n \frac{216i^2}{n^3} \right) \right] \\ &= \lim_{n \rightarrow \infty} \left[\frac{72}{n} \left(\sum_{i=1}^n 1 \right) - \frac{252}{n^2} \left(\sum_{i=1}^n i \right) + \frac{216}{n^3} \left(\sum_{i=1}^n i^2 \right) \right]. \end{aligned}$$

Use the sum formulas shown in the boxes at the top of the page (and the easier fact that $\sum_{i=1}^n 1 = n$) to obtain

$$\begin{aligned} & \lim_{n \rightarrow \infty} \left[72 - \frac{252}{n^2} \cdot \frac{n(n+1)}{2} + \frac{216}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \right] \\ &= \lim_{n \rightarrow \infty} \left[72 - 126 \frac{n+1}{n} + 36 \frac{(n+1)(2n+1)}{n^2} \right]. \end{aligned}$$

By the rules for taking limits of rational functions, this equals $72 - 126 + 36 \cdot 2 = 18$. Alternatively, you can factor this last expression completely as

$$\lim_{n \rightarrow \infty} \frac{18(n^2 - n + 2)}{n^2},$$

then use L'Hôpital's rule twice to evaluate the limit; you'll still get 18.

Problem #2 [3 pts] Express the limit (\star) as a definite integral.

The expression certainly looks like a Riemann sum. If the integral from which it came is

$$\int_a^b f(x) dx,$$

then apparently $\Delta x = 6/n = (b-a)/n$, so $b-a = 6$. The right-hand sum for this integral would be $x_i^* = a + i\Delta x = -2 + 6i/n$, so $a = -2$, which means $b = a+6 = 4$. Finally, the function f would have to be $f(x) = x^2 - 3x + 2$. Putting it all together, the answer is

$$\boxed{\int_{-2}^4 (x^2 - 3x + 2) dx.}$$

Alternatively, you can regard the Riemann sum as coming from the function $g(x) = (x-2)^2 - 3(x-2) + 2$. In this case the limits of integration would be 0 and 6, so the integral is

$$\int_0^6 ((x-2)^2 - 3(x-2) + 2) dx.$$

Problem #3 [3 pts] Use the Fundamental Theorem of Calculus to evaluate the integral you wrote down in Problem #2.

The integral in the box is

$$\left. \frac{x^3}{3} - \frac{3x^2}{2} + 2x \right|_2^6 = \left(\frac{216}{3} - \frac{108}{2} + 12 \right) - \left(\frac{-8}{3} - \frac{12}{2} - 4 \right) = \boxed{\frac{128}{3}}.$$

Problem #4. A particle moves along a straight line. Its velocity at time t is $v(t) = 2t - 3$.

#4a [5 pts] Find the *displacement* (i.e., change in distance) of the particle between $t = 0$ and $t = 5$. (You may use the Fundamental Theorem of Calculus.)

The displacement is

$$\begin{aligned} \int_0^5 v(t) dt &= \int_0^5 (2t-3) dt \\ &= \left. t^2 - 3t \right|_0^5 \\ &= (25 - 15) - (0 - 0) = \boxed{10.} \end{aligned}$$

#4b [5 pts] Find the *total distance traveled* between $t = 0$ and $t = 5$.

The total distance traveled is $\int_0^5 |v(t)| dt$. To evaluate this, we need to know where $v(t)$ is positive and where it is negative—it's not too hard to see that $v(t) \leq 0$ when $t \leq \frac{3}{2}$ and $v(t) \geq 0$ when $t \geq \frac{3}{2}$. Accordingly,

$$\begin{aligned} \int_0^5 |v(t)| dt &= \int_0^{\frac{3}{2}} (-2t+3) dt + \int_{\frac{3}{2}}^5 (2t-3) dt \\ &= \left. -t^2 + 3t \right|_0^{\frac{3}{2}} + \left. t^2 - 3t \right|_{\frac{3}{2}}^5 \\ &= \left(-\frac{9}{4} + \frac{9}{2} \right) + \left((25 - 15) - \left(\frac{9}{4} - \frac{9}{2} \right) \right) = \boxed{\frac{29}{2}}. \end{aligned}$$

Note that $|2t - 3| \neq 2t + 3$; absolute values don't work that way. (Try sketching the graphs of these two functions; you'll see that they are not the same.)

Bonus Problems [3 honors points each] Evaluate each of the following integrals, *without using the Fundamental Theorem of Calculus*. Your answer should be exact, not approximate.

$$(a) \quad \int_2^4 xe^{\cos x} dx + \int_4^{-2} xe^{\cos x} dx$$

Using Rule #5 (p. 362), this equals

$$\int_2^{-2} xe^{\cos x} dx$$

and by the unnumbered rule in the middle of p. 361, this in turn becomes

$$\int_{-2}^2 -xe^{\cos x} dx. \quad (\clubsuit)$$

Let $f(x) = -xe^{\cos x}$. Then $f(-x) = xe^{\cos(-x)} = xe^{\cos x} = -f(x)$; that is, $f(x)$ is an **odd** function. It follows that the integral (\clubsuit) is **zero**. (This fact is mentioned explicitly as equation (6) on p. 391, but it makes sense in terms of areas—we could break up the integral (\clubsuit) as

$$\int_{-2}^0 f(x) dx + \int_0^2 f(x) dx. \quad (\diamondsuit)$$

Because $f(x)$ is odd, the region above the graph and below the x -axis between $x = -2$ and $x = 0$ is congruent—to the area below the graph and above the x -axis between $x = 0$ and $x = 2$. If the area of this region is A , then the integral (\diamondsuit) equals $-A + A = 0$.

$$(b) \quad \int_0^{\pi/3} (2 - \sin^2 x) dx - \int_{-\pi}^{-2\pi/3} \cos^2 x dx$$

Here we first need to use the fact that $\cos x = -\cos(x + \pi)$ (this comes from the periodicity of the cosine function), so $\cos^2 x = \cos^2(x + \pi)$. SO we can change the limits on the second integral to 0 and $\pi/3$ (instead of $-\pi$ and $-2\pi/3$), then use the rules of §5.2 (pp. 361–363):

$$\begin{aligned} \int_0^{\pi/3} (2 - \sin^2 x) dx - \int_{-\pi}^{-2\pi/3} \cos^2 x dx &= \int_0^{\pi/3} (2 - \sin^2 x) dx - \int_0^{\pi/3} \cos^2 x dx \\ &= \int_0^{\pi/3} (2 - \sin^2 x - \cos^2 x) dx \\ &= \int_0^{\pi/3} 1 dx \\ &= \boxed{\pi/3.} \end{aligned}$$