
Mathematics 141 — Fall 2005 Quiz #7 (10/7/05) Solutions

The entire quiz (except the two bonus problems) is about the function

f(x) =
x2

x − 2
.

#1. [2 pts] Find all critical points of f .

Start by calculating f ′(x), using the Quotient Rule:

f ′(x) =
(x − 2)(2x) − (x2)(1)

(x − 2)2
=

x2 − 4x

(x − 2)2
=

x(x − 4)

(x − 2)2
.

So the critical points are at x = 2 (where f ′(x) is undefined) and x = 0, x = 4 (where f ′(x) = 0).

#2. [3 pts] Find all intervals on which f is increasing, and all intervals on which f is
decreasing.

By #1, the direction of f is constant on each of the intervals (−∞, 0), (0, 2), (2, 4), and (4,∞). Pick a
sample point in each of these intervals and determine the sign of f ′:

Interval Sample point Value of f ′ at sample point Direction of f

(−∞, 0) −1 5/9 Increasing
(0, 2) 1 −3 Decreasing
(2, 4) 3 −3 Decreasing
(4,∞) 1000 ≈ 1 Increasing

Some of you said that f(x) was decreasing on the interval (0, 4) [rather than on the two separate intervals
(0, 2) and (2, 4)]. This isn’t correct: for example, f(−1) = −1 but f(3) = 9. This is why a vertical asymptote
really must be considered as a critical point!

#3. [2 pts] For each critical point that you found, determine whether it is a local minimum,
a local maximum, or neither.

Using the First Derivative Test and the table in #2, we see that x = 0 is a local maximum, x = 4 is a local
minimum, and x = 2 is neither (indeed, it’s not even in the domain of f).

#4. [3 pts] Find the absolute maximum and absolute minimum of f(x) on the interval [5, 8].

This interval is a subset of (4,∞), on which f is increasing. So the absolute minimum occurs at x = 5 and
the absolute maximum occurs at x = 8.

(I had meant to ask about the interval [3, 8], but apparently a typo crept in, making the problem easier than
I hazd intended....)



#5. [2 pts] Find all inflection points of f .

We’ll need the second derivative:

f ′′(x) =
d

dx

(

x2 − 4x

(x − 2)2

)

=
(x − 2)2(2x − 4) − (x2 − 4x)(2(x − 2))

(x − 2)4

=
(x − 2)(2x − 4) − (x2 − 4x)(2)

(x − 2)3

=
2x2 − 4x − 4x + 8 − 2x2 + 8x

(x − 2)3

=
8

(x − 2)3
.

So x = 2 is the only inflection point.

#6. [3 pts] Find all intervals on which f is concave up, and all intervals on which f is concave
down.

From the calculation in #5, we see that f ′′(x) > 0 when x > 2 and f ′′(x) < 0 when x < 2. Therefore, f is
concave down on (−∞, 2) and concave down. on (2,∞).

#7. [2 pts] Find all vertical asymptotes of f , and describe the behavior of f(x) as x → ∞

or x → −∞.

There is a single vertical asymptote at x = 2, and lim
x→∞

f(x) = ∞ and lim
x→−∞

f(x) = −∞.

#8. [3 pts] Sketch the graph of f(x).

Here is the precise graph of f(x), produced using Maple. Your graph should strongly resemble it.
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Bonus problem #1 [4 pts] Let f(x) and g(x) be differentiable functions of x. Find a formula
for

d

dx

[

f(x)g(x)
]

,

and explain why your formula works both for power functions (where f(x) = x and g(x) is a
constant) and exponential functions (where f(x) is a constant and g(x) = x).

Abbreviate f = f(x) and g = g(x). Let y = f g, and use logarithmic differentiation:

ln y = ln fg = g · ln f

d

dx
[ln y] =

d

dx
[g · ln f ]

y′

y
= g′ ln f +

gf ′

f

so

y′ = y

(

g′ ln f +
gf ′

f

)

= fg

(

g′ ln f +
gf ′

f

)

. (∗)

If f(x) = x and g(x) = c is a constant, then f ′ = 1 and g′ = 0, so (*) becomes

y′ = xc ·
c

x
= cxc−1,

which confirms the Power Rule.

If g(x) = x and f(x) = c is a constant, then g′ = 1 and f ′ = 0, so (*) becomes

y′ = cx (ln c) ,

which confirms our rule for differentiating exponential functions.

Bonus problem #2 [4 pts] Recall the statement of the Mean Value Theorem: for every
function f(x) that is differentiable on a closed interval [a, b], there is at least one number c

between a and b such that

f ′(c) =
f(b) − f(a)

b − a
. (∗)

Show that the theorem becomes false if “differentiable” is replaced with “continuous”. (That
is, you need to come up with a function f and a closed interval I = [a, b] such that f is
continuous on I, but equation (∗) is false for every number c in I.)

There are lots of possibilities. For example, let I = [a, b] = [−1, 1], and let f(x) = |x|, which is continuous
but not differentiable on I . Then

f(b) − f(a)

b − a
=

1 − 1

1− (−1)
= 0,

but there is no number c in I such that f ′(c) = 0. (Recall that f ′(x) = 1 for x positive; f ′(x) = −1 for x

negative; and f ′(0) does not exist.)


