

#1. Determine all horizontal and vertical asymptotes of the function  $f(x) = \frac{-3x^2 - 2x + 6}{x^2 + 3x - 4}$ .

Vertical asymptotes of  $f(x)$  occur at the zeroes of its denominator  $x^2 + 3x - 4 = (x - 1)(x + 4)$ , that is, at  $x = 1$  and  $x = -4$ .

To find the horizontal asymptotes, evaluate the limits

$$\lim_{x \rightarrow \infty} f(x) \quad \text{and} \quad \lim_{x \rightarrow -\infty} f(x).$$

Since the numerator and denominator of  $f(x)$  are rational functions of the same degree (namely 2), both these limits equal the ratio of the leading coefficients, that is,  $-3/1 = 3$ . So  $f(x)$  has one horizontal asymptote, namely  $y = -3$ . By the way, these limits can also be calculated algebraically:

$$\begin{aligned} \lim_{x \rightarrow \infty} f(x) &= \lim_{x \rightarrow \infty} \frac{-3x^2 - 2x + 6}{x^2 + 3x - 4} \\ &= \lim_{x \rightarrow \infty} \left( \frac{-3x^2 - 2x + 6}{x^2 + 3x - 4} \right) \left( \frac{x^{-2}}{x^{-2}} \right) \\ &= \lim_{x \rightarrow \infty} \left( \frac{-3 - 2x^{-1} + 6x^{-2}}{1 + 3x^{-1} - 4x^{-2}} \right) \\ &= \frac{\lim_{x \rightarrow \infty} (-3) - \lim_{x \rightarrow \infty} (2x^{-1}) + \lim_{x \rightarrow \infty} (6x^{-2})}{\lim_{x \rightarrow \infty} (1) + \lim_{x \rightarrow \infty} (3x^{-1}) - \lim_{x \rightarrow \infty} (4x^{-2})} = \frac{-3 - 0 + 0}{1 + 0 - 0} = -3. \end{aligned}$$

Notice that “ $\lim_{x \rightarrow \infty}$ ” can be replaced with “ $\lim_{x \rightarrow -\infty}$ ” throughout without changing any of the algebra.

#2. Evaluate  $\lim_{x \rightarrow -\infty} \frac{\sqrt{x^2 + 1}}{2x}$ .

When  $x < 0$  (therefore, as  $x \rightarrow -\infty$ ),  $1/x = x^{-1} = -\sqrt{x^{-2}}$ . Therefore:

$$\begin{aligned} \lim_{x \rightarrow -\infty} \frac{\sqrt{x^2 + 1}}{2x} &= \lim_{x \rightarrow -\infty} \frac{\sqrt{x^2 + 1}}{2x} \cdot \frac{x^{-1}}{x^{-1}} \\ &= \lim_{x \rightarrow -\infty} \frac{-\sqrt{1 + x^{-2}}}{2} = \boxed{-\frac{1}{2}} \end{aligned}$$

- Many of you started by writing down the equation

$$\lim_{x \rightarrow -\infty} \frac{\sqrt{x^2 + 1}}{2x} = \lim_{x \rightarrow -\infty} \frac{\sqrt{x^2 + 1}}{2x} \cdot \frac{\sqrt{x^2 - 1}}{\sqrt{x^2 - 1}},$$

which is algebraically correct, but doesn't really help—when you multiply out the numerator, there will still be a radical! (This is not quite the same thing as rationalizing the numerator of an expression by using its conjugate (see, e.g., Example 6 on p. 112 of the textbook), because here the addition occurs *underneath* the radical.)

- Another common mistake was to look at the wrong function! Some of you claimed the limit was  $-\infty$ , and gave as justification either a table of values or a graph of the function

$$\frac{\sqrt{x^2 + 1}}{2}x \quad \text{rather than the correct} \quad \frac{\sqrt{x^2 + 1}}{2x}.$$

What you probably did was enter something like the following into your calculator:

$\sqrt{(\text{x} \wedge 2 + 1) / 2 * \text{x}}.$

This will give the first (incorrect) expression. The denominator needs to be enclosed in parentheses:

$\sqrt{(\text{x} \wedge 2 + 1) / (2 * \text{x})}$

will give the correct expression.

**#3. Evaluate**  $\lim_{x \rightarrow 0^-} \frac{\sqrt{x^2 + 1}}{2x}.$

As  $x \rightarrow 0$  from the left, the numerator  $\sqrt{x^2 + 1}$  approaches 1, while the denominator  $2x$  approaches zero through negative values. It follows that the given limit is  $-\infty$ .

Another possibility is to calculate

$$\begin{aligned} \lim_{x \rightarrow 0} \frac{\sqrt{x^2 + 1}}{2x} &= \lim_{x \rightarrow 0} \frac{\sqrt{x^2 + 1} \cdot x^{-1}}{2x \cdot x^{-1}} \\ &= \lim_{x \rightarrow 0} \frac{-\sqrt{1 + x^{-2}}}{2} \end{aligned}$$

and then to notice that the numerator of this expression approaches  $-\infty$ .

**#4. Let**  $g(x) = \frac{1}{\sqrt{x+1}}$ . **Find the slope of the tangent line to the graph of  $g$  at  $(0, 1)$ .**

We want to calculate  $g'(0)$ . There are two ways to do this (depending on which definition of derivative we choose), but they will look approximately the same. Here's one way:

$$\begin{aligned} g'(0) &= \lim_{h \rightarrow 0} \frac{g(0 + h) - g(0)}{h} = \lim_{h \rightarrow 0} \frac{\left(\frac{1}{\sqrt{h+1}} - 1\right)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\left(\frac{1}{\sqrt{h+1}} - \frac{\sqrt{h+1}}{\sqrt{h+1}}\right)}{h} \\ &= \lim_{h \rightarrow 0} \left(\frac{1 - \sqrt{h+1}}{h\sqrt{h+1}}\right) \\ &= \lim_{h \rightarrow 0} \left(\frac{1 - \sqrt{h+1}}{h\sqrt{h+1}} \cdot \frac{1 + \sqrt{h+1}}{1 + \sqrt{h+1}}\right) \end{aligned}$$

(this is the “dirty trick” step)

$$\begin{aligned}
 &= \lim_{h \rightarrow 0} \left( \frac{1 - (h + 1)}{h\sqrt{h+1}(1 + \sqrt{h+1})} \right) \\
 &= \lim_{h \rightarrow 0} \left( \frac{-h}{h\sqrt{h+1}(1 + \sqrt{h+1})} \right) \\
 &= \lim_{h \rightarrow 0} \left( \frac{-1}{\sqrt{h+1}(1 + \sqrt{h+1})} \right)
 \end{aligned}$$

(the cancellation we have been hoping for; now we can plug in  $h = 0$ )

$$= \frac{-1}{\sqrt{1}(1 + \sqrt{1})} = \boxed{\frac{1}{2}}$$


---

**#5. Let  $b(x) = 2x^2 - 5x + 6$ . Find a formula for the derivative  $b'(x)$ .**

$$\begin{aligned}
 b'(x) &= \lim_{h \rightarrow 0} \frac{b(x+h) - b(x)}{h} = \lim_{h \rightarrow 0} \frac{[(x+h)^2 - 5(x+h) + 6] - [x^2 - 5x + 6]}{h} \\
 &= \lim_{h \rightarrow 0} \frac{[x^2 + 2xh + h^2 - 5x - 5h + 6] - [x^2 - 5x + 6]}{h} \\
 &= \lim_{h \rightarrow 0} \frac{2xh + h^2 - 5h}{h} \\
 &= \lim_{h \rightarrow 0} 2x + h - 5 = \boxed{2x - 5}
 \end{aligned}$$


---

**Bonus problem** Suppose that  $f(x)$  is an even function (that is,  $f(x) = f(-x)$  for all  $x$ ). It is a fact that the derivative  $f'(x)$  is an odd function (that is,  $f'(x) = -f'(-x)$  for all  $x$ ).

**#E1. Prove this fact algebraically.**

We'll use the definition of the derivative and the condition that  $f$  is even to prove that  $f'$  is odd:

$$\begin{aligned}
 f'(a) &= \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a} \\
 &= \lim_{x \rightarrow a} \frac{f(-x) - f(-a)}{(-a) - (-x)} \\
 &= - \lim_{x \rightarrow a} \frac{f(-x) - f(-a)}{(-x) - (-a)}.
 \end{aligned}$$

Define  $w = -x$  and  $b = -a$ , so that  $w \rightarrow b$  as  $x \rightarrow a$ , and the last expression becomes

$$- \lim_{w \rightarrow b} \frac{f(w) - f(b)}{w - b},$$

which is precisely the definition of  $f'(w)$  (with some letters changed).

- Some of you were confused by the terms “even function” and “odd function.” These don’t refer to the degree of a polynomial, but to the symmetries given by the equations  $f(x) = f(-x)$  (even) and  $f'(x) = -f'(-x)$  (odd). Graphically, the graph of an even function is symmetric with respect to reflection across the  $y$ -axis, while the graph of an odd function is symmetric with respect to rotating 180° around the origin. (A function doesn’t have to be a polynomial to be even or odd. Yes, if  $n$  is even then  $f(x) = x^n$  is an

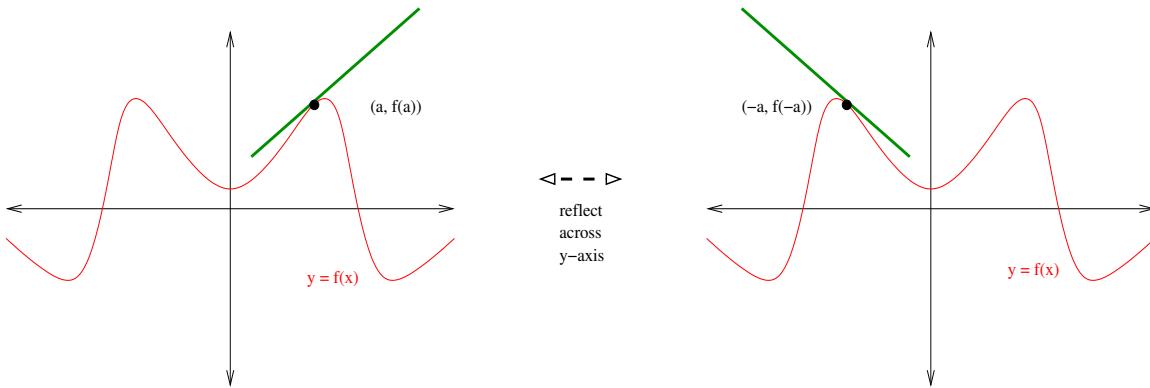
even function, and if  $n$  is odd then  $g(x) = x^n$  is an odd function. But the terminology is more general: for example,  $h(x) = \cos x$  is also even.)

- Some of you answered this question by picking one particular even function, often  $f(x) = x^2$ , then showing that its derivative (in this case,  $f'(x) = 2x$ ) was odd. While correct in itself, that doesn't tell us anything about all the other even functions in the world. The principle here is that **you can't prove a general fact by working it out for one example**. The reason that the argument above qualifies as a proof is that it doesn't use anything about  $f(x)$  other than the property that it is even; therefore, it is valid for every even function you can dream up.

**#E2. Explain this fact in terms of the graphs of the functions  $f(x)$  and  $f'(x)$ .**

If  $f(x)$  is even, then we can reflect its graph across the  $y$ -axis without changing the graph. Suppose that we draw the tangent line to the graph at  $(a, f(a))$  and reflect this line along with the graph. Then the reflected line will be the tangent line at  $(-a, f(a)) = (-a, f(-a))$ , but its slope will have been multiplied by  $-1$  as a result of the reflection. Therefore  $f'(-a) = -f'(a)$ . This works for any value  $a$  in the domain of  $f$ , so we can conclude that  $f'$  is an odd function.

For example, the graph and tangent line might look like this:



(Yes, the figure only shows what's going on for one specific even function. But the argument just given applies to any even function; the figure is just there to help make the geometric idea explicit.)