

I'll use the following (nonstandard) notation throughout: whenever I apply L'Hôpital's Rule, I'll use the symbol $\stackrel{\text{LH}}{=}$ to alert you that that's what I'm doing!

Problem #1: Evaluate

$$\lim_{x \rightarrow 0} \frac{x - \ln(x + 1)}{1 - \cos 2x}.$$

This is a indefinite form of type 0/0, so we can apply L'Hôpital's Rule to obtain

$$\lim_{x \rightarrow 0} \frac{1 - \frac{1}{x+1}}{2 \sin 2x}.$$

Cleaning this up gives

$$\lim_{x \rightarrow 0} \frac{x}{2(x + 1) \sin(2x)}.$$

This is still a 0/0 form, so we apply L'Hôpital's Rule again (first pulling out the constant 1/2), obtaining

$$\frac{1}{2} \lim_{x \rightarrow 0} \frac{1}{\sin(2x) + 2(x + 1) \cos(2x)}.$$

Now *this* limit can be evaluated by plugging in $x = 0$. We get $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ as the final answer.

Problem #2: Let X be a regular polygon with n sides, and let r be the “radius” of X , that is, the distance from the center of X to any one of its vertices. Let A be the area of X .

(a) Express A as a function of r and n .

Slice the polygon up into n isosceles triangles as shown. Each triangle has base $2r \sin \theta$ and height $r \cos \theta$, hence area $r^2 \sin \theta \cos \theta$. Since there are n triangles and $\theta = \pi/n$, we obtain

$$A = nr^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}.$$

(b) Before you do any more calculation, make an educated guess about the limit of A as $n \rightarrow \infty$.

The larger n gets, the more the polygon looks like a circle with radius r . So a logical guess would be

$$\lim_{n \rightarrow \infty} nr^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} = \pi r^2.$$

(c) Back up your guess in part (b) by evaluating the limit exactly.

$$\begin{aligned}
\lim_{n \rightarrow \infty} nr^2 \sin(\pi/n) \cos(\pi/n) &= \left(r^2 \lim_{n \rightarrow \infty} \cos(\pi/n) \right) \left(\lim_{n \rightarrow \infty} n \sin(\pi/n) \right) \\
&= r^2 \lim_{n \rightarrow \infty} \frac{\sin(\pi/n)}{n^{-1}} \\
&\stackrel{\text{LH}}{=} r^2 \lim_{n \rightarrow \infty} \frac{(\cos(\pi/n))(-\pi n^{-2})}{-n^{-2}} \\
&= r^2 \lim_{n \rightarrow \infty} \pi \cos(\pi/n) \\
&= \pi r^2,
\end{aligned}$$

as expected.

Problem #3: Let N be the population of the world, and let p be the probability that two randomly chosen people A and B have ever shaken hands. (Note that p is probably not a constant, but a function of N . If so, then $p = p(N)$ is almost certainly a *decreasing* function of N .)

Is there an “antisocial” person somewhere who has never shaken hands with anyone else?

The probability that any *particular* person is antisocial can be shown to be

$$(1 - p(N))^{N-1}.$$

This expression can be rather unpleasant to evaluate, particularly since N is currently something like 6,475,087,673. Fortunately, limits come to the rescue: for such a large value of N , the probability can be estimated very closely by taking the limit as $N \rightarrow \infty$; call this limit Y . We can actually simplify the expression by replacing the exponent $N - 1$ with N . That is,

$$Y = \lim_{N \rightarrow \infty} (1 - p(N))^N.$$

(a) Evaluate Y if $p(N) = c/N$, where c is a positive constant. (Hint: This is actually a special case of one of the homework problems from §4.5.)

The limit Y has the indefinite form 1^∞ . To evaluate Y , we replace the expression $(1 - p(N))^N$ with its logarithm, in order to convert it to one of the indefinite forms governed by L'Hôpital's Rule:

$$\begin{aligned}
Z &= \lim_{N \rightarrow \infty} \ln(1 - c/N)^N = \lim_{N \rightarrow \infty} N \ln(1 - c/N) \\
&= \lim_{N \rightarrow \infty} \frac{\ln(1 - cN^{-1})}{N^{-1}} \\
&\stackrel{\text{LH}}{=} \lim_{N \rightarrow \infty} \frac{\frac{1}{1-cN^{-1}}(cN^{-2})}{-N^{-2}} \\
&= \lim_{N \rightarrow \infty} \frac{-c}{1 - cN^{-1}} \\
&= -c,
\end{aligned}$$

since $cN^{-1} \rightarrow 0$ as $N \rightarrow \infty$. Therefore $Y = e^Z = e^{-c}$.

(b) Evaluate Y if $p(N) = c/N^2$.

The same technique as before yields

$$\begin{aligned} Z &= \lim_{N \rightarrow \infty} \ln(1 - c/N^2)^N = \lim_{N \rightarrow \infty} N \ln(1 - c/N^2) \\ &= \lim_{N \rightarrow \infty} \frac{\ln(1 - cN^{-2})}{N^{-1}} \\ &\stackrel{\text{LH}}{=} \lim_{N \rightarrow \infty} \frac{\frac{1}{1-cN^{-2}}(2cN^{-3})}{-N^{-2}} \\ &= \lim_{N \rightarrow \infty} \frac{-2cN^{-1}}{1 - cN^{-2}} \\ &= 0. \end{aligned}$$

Therefore $Y = e^Z = e^0 = 1$.

(c) Evaluate Y if $p(N) = \frac{\ln N}{N}$.

Yet again, we evaluate

$$\begin{aligned} Z &= \lim_{N \rightarrow \infty} \ln \left(1 - \frac{\ln N}{N} \right)^N = \lim_{N \rightarrow \infty} N \ln \left(1 - \frac{\ln N}{N} \right) \\ &= \lim_{N \rightarrow \infty} \frac{\ln \left(1 - \frac{\ln N}{N} \right)}{N^{-1}} \\ &\stackrel{\text{LH}}{=} \lim_{N \rightarrow \infty} \frac{\left(\frac{1}{1 - \frac{\ln N}{N}} \right) \left(-\frac{1 - \ln N}{N^2} \right)}{-N^{-2}} \\ &= \lim_{N \rightarrow \infty} \frac{1 - \ln N}{1 - \frac{\ln N}{N}}. \end{aligned}$$

As $N \rightarrow \infty$, $\ln N \rightarrow \infty$, so the numerator of this expression tends to $-\infty$. However, $\lim_{N \rightarrow \infty} \frac{\ln N}{N} = 0$, so the denominator of this expression tends to 1. It follows that $Z = -\infty$. We'd like to say that $Y = e^Z$, but it's not really correct to write $Y = e^{-\infty}$. To be precise, the expression

$$\ln \left(1 - \frac{\ln N}{N} \right)^N$$

decreases without bound as $N \rightarrow \infty$, which means that

$$\left(1 - \frac{\ln N}{N} \right)^N$$

must tend to zero. Therefore $Y = 0$.

Note: This is an example of the very general and powerful idea of a *random graph*, which can be used to study many networks arising in nature. Other examples include hydrogen bonding between water molecules in a block of ice; the spread of Dutch elm disease between trees in a forest; the most efficient way to locate wireless Internet routers; and many others.

Problem #4: Suppose that $f(x)$ and $g(x)$ are functions such that

$$\lim_{x \rightarrow a} f(x) = +\infty, \quad \lim_{x \rightarrow a} g(x) = +\infty,$$

and

$$\lim_{x \rightarrow a} [f(x) - g(x)] = r,$$

where r is some real number.

(a) What can you say about the limit

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)}?$$

Does it always exist? If so, what do you think its value is? (You might want to cite some examples.)

The easiest way to construct an example is to let $f(x) = g(x) + r$, in which case it is not hard to see that the limit in question must be 1. Intuitively, this makes sense—if the difference between $f(x)$ and $g(x)$ is bounded by a constant, they should be growing at the same rate.

(b) Can you prove that your guess in (a) is correct? (Hint: Dirty tricks may be required.)

Try this:

$$\begin{aligned} \lim_{x \rightarrow a} \frac{f(x)}{g(x)} &= \lim_{x \rightarrow a} \frac{f(x) - g(x) + g(x)}{g(x)} \\ &= \lim_{x \rightarrow a} \frac{f(x) - g(x)}{g(x)} + \lim_{x \rightarrow a} g(x)g(x) \\ &= \lim_{x \rightarrow a} \frac{r}{g(x)} + 1 \\ &= 0 + 1 = 1. \end{aligned}$$

Problem #5 (Harder!) Another limit that arises in the theory of random graphs is

$$\lim_{n \rightarrow \infty} n \left(1 - \frac{c \ln n}{n} \right)^n,$$

where c is a positive constant.

Show that

$$\lim_{n \rightarrow \infty} n \left(1 - \frac{c \ln n}{n} \right)^n = \begin{cases} \infty & \text{if } 0 < c < 1, \\ 1 & \text{if } c = 1, \\ 0 & \text{if } c > 1. \end{cases}$$

As is so often the case, we will calculate the limit of the logarithm of the expression we are interested in; that is,

$$\lim_{n \rightarrow \infty} \ln \left[n \left(1 - \frac{c \ln n}{n} \right)^n \right].$$

First, we do some algebraic manipulation.

$$\begin{aligned} \lim_{n \rightarrow \infty} \ln \left[n \left(1 - \frac{c \ln n}{n} \right)^n \right] &= \lim_{n \rightarrow \infty} \ln \left[n \left(\frac{n - c \ln n}{n} \right)^n \right] \\ &= \lim_{n \rightarrow \infty} \ln \left[n \left(\frac{(n - c \ln n)^n}{n^n} \right) \right] \\ &= \lim_{n \rightarrow \infty} \ln \left[\frac{(n - c \ln n)^n}{n^{n-1}} \right] \\ &= \lim_{n \rightarrow \infty} [n \ln(n - c \ln n) - (n - 1) \ln n]. \end{aligned}$$

Now, we set $m = \ln n$, so that $n = e^m$. As $n \rightarrow \infty$, so does m , so we can rewrite this expression in terms of m rather than n , and then do some more algebra:

$$\begin{aligned} &= \lim_{m \rightarrow \infty} [e^m \ln(e^m - cm) - (e^m - 1)m] \\ &= \lim_{m \rightarrow \infty} [e^m (\ln(e^m - cm) - m) + m] \\ &= \lim_{m \rightarrow \infty} \frac{\ln(e^m - cm) - m + me^{-m}}{e^{-m}}. \end{aligned} \tag{1}$$

I claim that (1) is an indeterminate form of type $0/0$. The denominator certainly tends to zero as $m \rightarrow \infty$, but the numerator is itself an indeterminate form (technically of type $\infty - \infty$). However,

$$\lim_{m \rightarrow \infty} me^{-m} = \lim_{m \rightarrow \infty} \frac{m}{e^m} \stackrel{\text{LH}}{=} \lim_{m \rightarrow \infty} \frac{1}{e^m} = 0, \tag{2}$$

and

$$\begin{aligned} \lim_{m \rightarrow \infty} \ln(e^m - cm) - m &= \ln \lim_{m \rightarrow \infty} \exp(\ln(e^m - cm) - m) \\ &= \ln \lim_{m \rightarrow \infty} \frac{e^m - cm}{e^m} \\ &\stackrel{\text{LH}}{=} \ln \lim_{m \rightarrow \infty} \frac{e^m - c}{e^m} \\ &\stackrel{\text{LH}}{=} \ln \lim_{m \rightarrow \infty} \frac{e^m}{e^m} = \ln 1 = 0, \end{aligned}$$

proving my claim. The upshot is that we can apply L'Hôpital's Rule to (1):

$$\lim_{m \rightarrow \infty} \frac{\ln(e^m - cm) - m + me^{-m}}{e^{-m}} \stackrel{\text{LH}}{=} \lim_{m \rightarrow \infty} \frac{\frac{e^m - c}{e^m} - 1 + e^{-m} - me^{-m}}{-e^{-m}}.$$

Now we do some more algebra:

$$\begin{aligned}
\lim_{m \rightarrow \infty} \frac{\frac{e^m - c}{e^m - cm} - 1 + e^{-m} - me^{-m}}{-e^{-m}} &= \lim_{m \rightarrow \infty} \frac{e^m - c + (e^m - cm)(-1 + e^{-m} - me^{-m})}{e^{-m}(cm - e^m)} \\
&= \lim_{m \rightarrow \infty} \frac{e^m - c + (-e^m + 1 - m + cm - cme^{-m} + cm^2e^{-m})}{(e^m - cm)(-e^{-m})} \\
&= \lim_{m \rightarrow \infty} \frac{-c + 1 - m + cm - cme^{-m} + cm^2e^{-m}}{cme^{-m} - 1}
\end{aligned}$$

This is **not** an indeterminate form—its denominator tends to -1 as $m \rightarrow \infty$, so it equals

$$-\lim_{m \rightarrow \infty} -c + 1 - m + cm - cme^{-m} + cm^2e^{-m}.$$

In this expression, the two terms that involve e^{-m} tend to zero as $m \rightarrow \infty$ (this is essentially the same calculation as (2)), so we can throw them away. Distributing the minus sign, we wind up with

$$\lim_{m \rightarrow \infty} (1 - c)m + c - 1,$$

which is clearly equal to

$$\begin{cases} -\infty & \text{if } c > 1, \\ 0 & \text{if } c = 1, \\ +\infty & \text{if } c < 1. \end{cases} \quad (3)$$

Remember, this is the limit of the **logarithm** of the actual expression we are interested in. The desired conclusion is now immediate from (3). (Phew!)