
Mathematics 141 Groupwork (10/28/05) Answer Sketches

I’ll use the following (nonstandard) notation throughout: whenever I apply L’Hôpital’s Rule, I’ll use the

symbol
LH
= to alert you that that’s what I’m doing!

Problem #1: Evaluate

lim
x→0

x − ln(x + 1)

1 − cos 2x
.

This is a indefinite form of type 0/0, so we can apply L’Hôpital’s Rule to obtain

lim
x→0

1 −
1

x+1

2 sin 2x
.

Cleaning this up gives

lim
x→0

x

2(x + 1) sin(2x)
.

This is still a 0/0 form, so we apply L’Hôpital’s Rule again (first pulling out the constant 1/2), obtaining

1

2
lim
x→0

1

sin(2x) + 2(x + 1) cos(2x)
.

Now this limit can be evaluated by plugging in x = 0. We get 1

2
·

1

2
= 1

4
as the final answer.

Problem #2: Let X be a regular polygon with n sides, and let r be the “radius” of X, that
is, the distance from the center of X to any one of its vertices. Let A be the area of X.

(a) Express A as a function of r and n.

Slice the polygon up into n isosceles triangles as shown. Each triangle has base 2r sin θ and height r cos θ,
hence area r2 sin θ cos θ. Since there are n triangles and θ = π/n, we obtain

A = nr2 sin
π

n
cos

π

n
.

(b) Before you do any more calculation, make an educated guess about the limit of A as
n → ∞.

The larger n gets, the more the polygon looks like a circle with radius r. So a logical guess would be

lim
n→∞

nr2 sin
π

n
cos

π

n
= πr2.

(c) Back up your guess in part (b) by evaluting the limit exactly.



lim
n→∞

nr2 sin(π/n) cos(π/n) =
(

r2 lim
n→∞

cos(π/n)
)(

lim
n→∞

n sin(π/n)
)

= r2 lim
n→∞

sin(π/n)

n−1

LH
= r2 lim

n→∞

(cos(π/n)) (−πn−2)

−n−2

= r2 lim
n→∞

π cos(π/n)

= πr2,

as expected.

Problem #3: Let N be the population of the world, and let p be the probability that two
randomly chosen people A and B have ever shaken hands. (Note that p is probably not a
constant, but a function of N . If so, then p = p(N) is almost certainly be a decreasing function
of N .)

Is there an “antisocial” person somewhere who has never shaken hands with anyone else?

The probability that any particular person is antisocial can be shown to be

(1 − p(N))N−1.

This expression can be rather unpleasant to evaluate, particularly since N is currently some-
thing like 6,475,087,673. Fortunately, limits come to the rescue: for such a large value of N ,
the probability can be be estimated very closely by taking the limit as N → ∞; call this limit
Y . We can actually simplify the expression by replacing the exponent N − 1 with N . That is,

Y = lim
N→∞

(1 − p(N))N .

(a) Evaluate Y if p(N) = c/N , where c is a positive constant. (Hint: This is actually a
special case of one of the homework problems from §4.5.)

The limit Y has the indefinite form 1∞. To evaluate Y , we replace the expression (1 − p(N))N with its
logarithm, in order to convert it to one of the indefinite forms governed by L’Hôpital’s Rule:

Z = lim
N→∞

ln(1 − c/N)N = lim
N→∞

N ln(1 − c/N)

= lim
N→∞

ln(1 − cN−1)

N−1

LH
= lim

N→∞

1

1−cN−1 (cN−2)

−N−2

= lim
N→∞

−c

1 − cN−1

= −c,



since cN−1
→ 0 as N → ∞. Therefore Y = eZ = e−c.

(b) Evaluate Y if p(N) = c/N2.

The same technique as before yields

Z = lim
N→∞

ln(1 − c/N2)N = lim
N→∞

N ln(1 − c/N2)

= lim
N→∞

ln(1 − cN−2)

N−1

LH
= lim

N→∞

1

1−cN−2 (2cN−3)

−N−2

= lim
N→∞

−2cN−1

1 − cN−2

= 0.

Therefore Y = eZ = e0 = 1.

(c) Evaluate Y if p(N) =
ln N

N
.

Yet again, we evaluate

Z = lim
N→∞

ln

(

1 −

ln N

N

)N

= lim
N→∞

N ln

(

1 −

ln N

N

)

= lim
N→∞

ln
(

1 −
ln N

N

)

N−1

LH
= lim

N→∞

(

1

1− ln N

N

)

(

−
1−ln N

N2

)

−N−2

= lim
N→∞

1 − ln N

1−
ln N

N

.

As N → ∞, ln N → ∞, so the numerator of this expression tends to −∞. However, lim
N→∞

ln N

N
= 0, so the

denominator of this expression tends to 1. It follows that Z = −∞. We’d like to say that Y = eZ , but it’s
not really correct to write Y = e−∞. To be precise, the expression

ln

(

1 −

ln N

N

)N

decreases without bound as N → ∞, which means that
(

1 −

ln N

N

)N

must tend to zero. Therefore Y = 0.

Note: This is an example of the very general and powerful idea of a random graph, which can be used to
study many networks arising in nature. Other examples include hydrogen bonding between water molecules
in a block of ice; the spread of Dutch elm disease between trees in a forest; the most efficient way to locate
wireless Internet routers; and many others.



Problem #4: Suppose that f(x) and g(x) are functions such that

lim
x→a

f(x) = +∞, lim
x→a

g(x) = +∞,

and

lim
x→a

[f(x) − g(x)] = r,

where r is some real number.

(a) What can you say about the limit

lim
x→a

f(x)

g(x)
?

Does it always exist? If so, what do you think its value is? (You might want to cite some
examples.)

The easiest way to construct an example is to let f(x) = g(x) + r, in which case it is not hard to see that
the limit in question must be 1. Intuitively, this makes sense—if the difference between f(x) and g(x) is
bounded by a constant, they should be growing at the same rate.

(b) Can you prove that your guess in (a) is correct? (Hint: Dirty tricks may be required.)

Try this:

lim
x→a

f(x)

g(x)
= lim

x→a

f(x) − g(x) + g(x)

g(x)

= lim
x→a

f(x) − g(x)

g(x)
+ lim

x→a
g(x)g(x)

= lim
x→a

r

g(x)
+ 1

= 0 + 1 = 1.

Problem #5 (Harder!) Another limit that arises in the theory of random graphs is

lim
n→∞

n

(

1 −
c ln n

n

)n

,

where c is a positive constant.

Show that

lim
n→∞

n

(

1 −
c ln n

n

)n

=











∞ if 0 < c < 1,

1 if c = 1,

0 if c > 1.



As is so often the case, we will calculate the limit of the logarithm of the expression we are interested in;
that is,

lim
n→∞

ln

[

n

(

1 −

c ln n

n

)n]

.

First, we do some algebraic manipulation.

lim
n→∞

ln

[

n

(

1 −

c lnn

n

)n]

= lim
n→∞

ln

[

n

(

n − c ln n

n

)n]

= lim
n→∞

ln

[

n

(

(n − c ln n)n

nn

)]

= lim
n→∞

ln

[

(n − c lnn)n

nn−1

]

= lim
n→∞

[n ln(n − c ln n) − (n − 1) lnn] .

Now, we set m = ln n, so that n = em. As n → ∞, so does m, so we can rewrite this expression in terms of
m rather than n, and then do some more algebra:

= lim
m→∞

[em ln(em
− cm) − (em

− 1)m]

= lim
m→∞

[em(ln(em
− cm) − m) + m]

= lim
m→∞

ln(em
− cm) − m + me−m

e−m
. (1)

I claim that (1) is an indeterminate form of type 0/0. The denominator certainly tends to zero as m → ∞,
but the numerator is itself an indeterminate form (technically of type ∞−∞). However,

lim
m→∞

me−m = lim
m→∞

m

em

LH
= lim

m→∞

1

em
= 0, (2)

and

lim
m→∞

ln(em
− cm) − m = ln lim

m→∞

exp (ln(em
− cm) − m)

= ln lim
m→∞

em
− cm

em

LH
= ln lim

m→∞

em
− c

em

LH
= ln lim

m→∞

em

em
= ln 1 = 0,

proving my claim. The upshot is that we can apply L’Hôpital’s Rule to (1):

lim
m→∞

ln(em
− cm) − m + me−m

e−m

LH
= lim

m→∞

e
m
−c

em
−cm

− 1 + e−m
− me−m

−e−m
.

Now we do some more algebra:



lim
m→∞

e
m
−c

em
−cm

− 1 + e−m
− me−m

−e−m
. = lim

m→∞

em
− c + (em

− cm)(−1 + e−m
− me−m)

e−m(cm − em)

= lim
m→∞

em
− c + (−em + 1 − m + cm − cme−m + cm2e−m)

(em
− cm)(−e−m)

= lim
m→∞

−c + 1 − m + cm − cme−m + cm2e−m

cme−m
− 1

This is not an indeterminate form—its denominator tends to −1 as m → ∞, so it equals

− lim
m→∞

−c + 1 − m + cm − cme−m + cm2e−m.

In this expression, the two terms that involve e−m tend to zero as m → infty (this is essentially the same
calculation is (2)), so we can throw them away. Distributing the minus sign, we wind up with

lim
m→∞

(1 − c)m + c − 1,

which is clearly equal to










−∞ if c > 1,

0 if c = 1,

+∞ if c < 1.

(3)

Remember, this is the limit of the logarithm of the actual expression we are interested in. The desired
conclusion is now immediate from (3). (Phew!)


