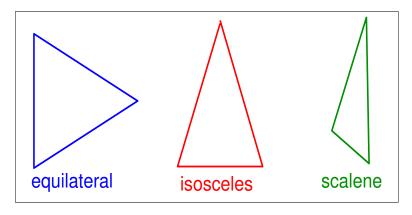
Defining Symmetry

Which of these triangles is the most symmetric?



A **rigid motion** is the action of taking an object and moving it to a different location without altering its shape or size.

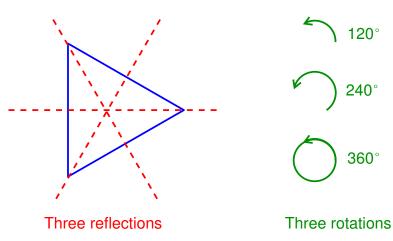
Rotations, reflections, translations, and glide reflections are all examples of rigid motions.

A **rigid motion** is the action of taking an object and moving it to a different location without altering its shape or size.

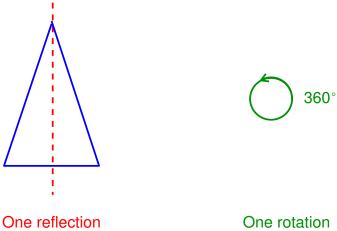
Rotations, reflections, translations, and glide reflections are all examples of rigid motions.

An equilateral triangle is **more symmetric** than an isosceles or scalene triangle because it has **more different rigid motions**.

Equilateral: Six symmetries



Isosceles: Two symmetries



Scalene: One symmetry

No reflections

One rotation

The more different rigid motions a figure has, the more symmetric it is.

The more different rigid motions a figure has, the more symmetric it is.

(In other words, the more different ways you can pick up a transparency of the figure, move it around, and put it back on the original figure, the more symmetric it is.)

The more different rigid motions a figure has, the more symmetric it is.

(In other words, the more different ways you can pick up a transparency of the figure, move it around, and put it back on the original figure, the more symmetric it is.)

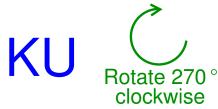
Every figure has at least one rigid motion, the **identity motion** (which doesn't move it at all).

A **rigid motion** is the action of taking an object and moving it to a different location without altering its shape or size.

A **rigid motion** is the action of taking an object and moving it to a different location without altering its shape or size.

A rigid motion is defined by **where each point ends up**, not by how it gets there.

Rotate 90° counterclockwise



Same rigid motion!

Rotate 90° counterclockwise

ightharpoonup We will name rigid motions by cursive letters like \mathcal{M} .

ightharpoonup We will name rigid motions by cursive letters like \mathcal{M} .

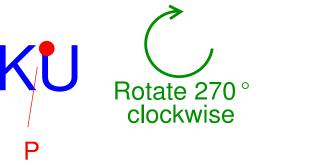
▶ If a motion \mathcal{M} moves a point P to a point P', then P' is called the **image** of P. Notation:

$$\mathcal{M}(P) = P'$$
.

▶ P and P' together are called a **point-image pair**.

A Point-Image Pair

A Point-Image Pair

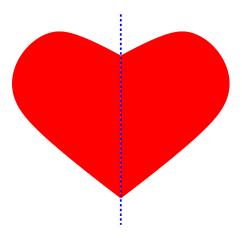


Reflections

Reflection across a line in the plane is a rigid motion. The line we reflect across is called the **axis of reflection**.

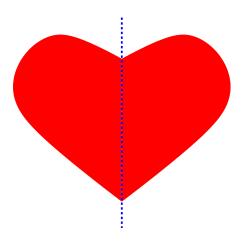
Reflections

Reflection across a line in the plane is a rigid motion. The line we reflect across is called the **axis of reflection**.

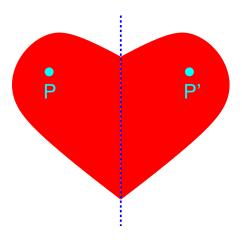


Property 1: If \mathcal{M} is a reflection and we know its axis of reflection, then we can find the image of any point under \mathcal{M} .

Property 1: If \mathcal{M} is a reflection and we know its axis of reflection, then we can find the image of any point under \mathcal{M} .

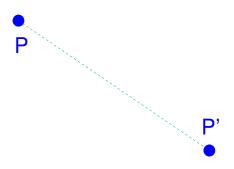


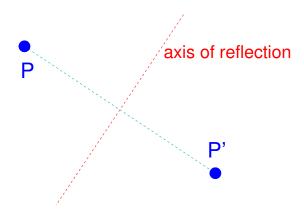
Property 1: If \mathcal{M} is a reflection and we know its axis of reflection, then we can find the image of any point under \mathcal{M} .



Property 1: If \mathcal{M} is a reflection and we know its axis of reflection, then we can find the image of any point under \mathcal{M} .

Therefore, every reflection is completely determined by its axis of reflection.



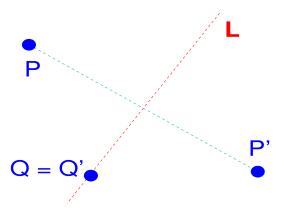


Property 2: If \mathcal{M} is a reflection, and we know a point P and its image P' (provided that $P' \neq P$), then we can find the image of any other point.

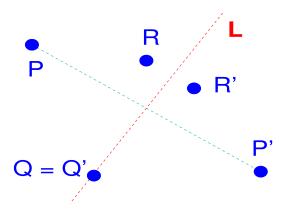
Therefore, every reflection is completely determined by one point-image pair.

Property 3: If \mathcal{M} is a reflection with axis L, then the fixed points of \mathcal{M} are exactly the points on L.

Property 3: If \mathcal{M} is a reflection with axis L, then the fixed points of \mathcal{M} are exactly the points on L.



Property 3: If \mathcal{M} is a reflection with axis L, then the fixed points of \mathcal{M} are exactly the points on L.

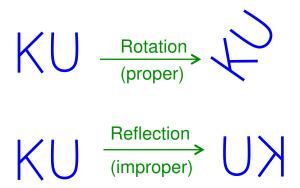


Property 4: Reflections are **improper** rigid motions.

That is, they reverse counterclockwise/clockwise orientations.

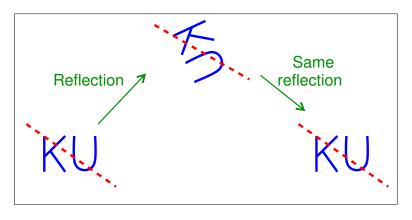
Property 4: Reflections are **improper** rigid motions.

That is, they reverse counterclockwise/clockwise orientations.



Property 5: If P' is the image of P under a reflection, then (P')' = P.

Property 5: If P' is the image of P under a reflection, then (P')' = P.



I.e., repeating a reflection twice gives the **identity motion**.

Properties of Reflections: Summary

- 1. Every reflection is completely determined by its axis of reflection.
- 2. Every reflection is completely determined by a single point-image pair P and P' (provided that $P \neq P'$).
- 3. The fixed points of a reflection are exactly the points on its axis of reflection.
- 4. Reflections are **improper** rigid motions (they reverse clockwise and counterclockwise orientations).
- 5. Applying the same reflection twice gives the identity motion.

Rotation around a point is a rigid motion.

Rotation around a point is a rigid motion.

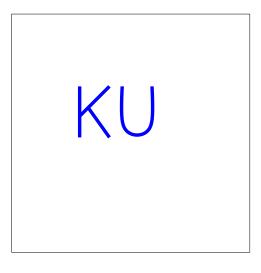
A rotation is defined by two things:

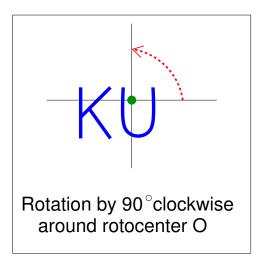
- the rotocenter, or the point about which the rotation takes place;
- the angle of rotation.

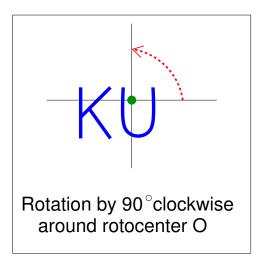
Rotation around a point is a rigid motion.

A rotation is defined by two things:

- the rotocenter, or the point about which the rotation takes place;
- the angle of rotation.







Question: How many point-image pairs determine a rotation?

In other words, if you know that \mathcal{M} is a rotation and you know that P' is the image of P, do you know what \mathcal{M} is?

Question: How many point-image pairs determine a rotation?

In other words, if you know that \mathcal{M} is a rotation and you know that P' is the image of P, do you know what \mathcal{M} is?

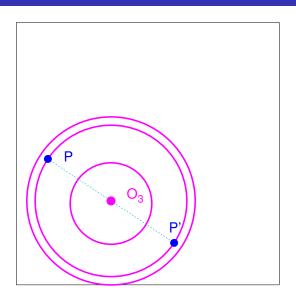
How about if you know that P' is the image of P and that Q' is image of Q?

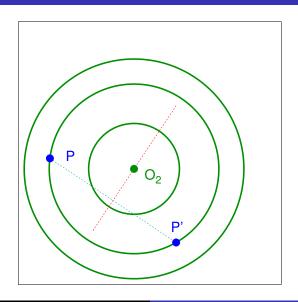
Question: How many point-image pairs determine a rotation?

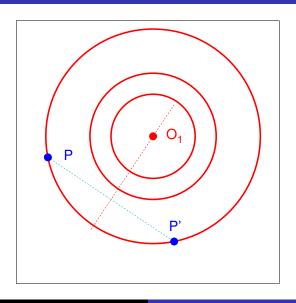
In other words, if you know that \mathcal{M} is a rotation and you know that P' is the image of P, do you know what \mathcal{M} is?

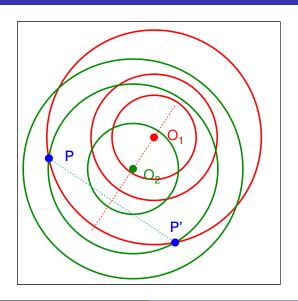
How about if you know that P' is the image of P and that Q' is image of Q?

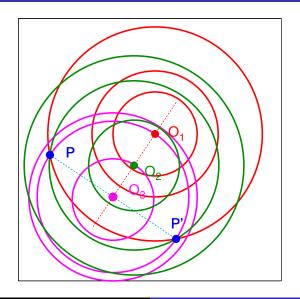
Related question: Can a rotation have any fixed point other than its rotocenter?

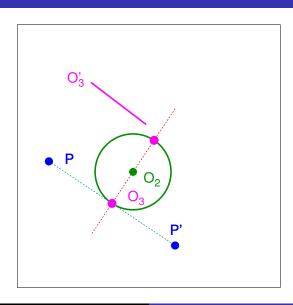












Properties of Rotations

- 1. A 360° rotation is equivalent to the identity motion. (So are720°, 1040°, ...)
- 2. Rotations are **proper** rigid motions (they preserve clockwise/counterclockwise orientations). P and P' (provided that $P \neq P'$).
- 3. A rotation that is not the identity has only one fixed point its rotocenter.
- 4. A reflection is determined by any **two** point-image pairs P, P' and Q, Q'.